ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

伺服電動機系統(tǒng)模型參考自適應(yīng)建模方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)資助項目(2009CB724406)


Modeling Method for Servo Motor System Based on Model Reference Adaptive System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于模型參考自適應(yīng)系統(tǒng)的建模方法,,以動態(tài)特性優(yōu)良的低階系統(tǒng)為參考模型,以伺服電動機系統(tǒng)為被控對象,,基于Lyapunov穩(wěn)定性理論建立模型參考自適應(yīng)系統(tǒng),,通過試驗使可調(diào)系統(tǒng)和參考模型達到精確匹配,然后推導(dǎo)了伺服電動機系統(tǒng)的低階模型,。結(jié)合實例,,利用該方法得出了伺服電動機系統(tǒng)的二階模型,對該模型和伺服電動機系統(tǒng)在20 s內(nèi)連續(xù)輸入50000個脈沖信號時,,兩者輸出相差在±0.00063 rad以內(nèi),,證明了所獲得的模型具有較高的精確度。

    Abstract:

    A modeling method was proposed based on model reference adaptive system (MRAS). According to Lyapunov stability theory, a MRAS was established, with a low-order model which has excellent dynamic characteristics, serve as reference model, and the servo motor system as controlled plant. The low-order model of the servo motor system can be conducted when the adjustable system and reference model achieved an exact match through experiment. Using the proposed method, the second-order model of the servo motor system was derived from the experimental results of case study. The model was proved to have a high accuracy through simulation and experiment. The difference between the two models output within ±0.00063 rad when 50000 pulse signals were input continuously within 20 s. 

    參考文獻
    相似文獻
    引證文獻
引用本文

王永強,張承瑞,郎需林,張岳.伺服電動機系統(tǒng)模型參考自適應(yīng)建模方法[J].農(nóng)業(yè)機械學(xué)報,2013,44(4):275-279. Wang Yongqiang, Zhang Chengrui, Lang Xulin, Zhang Yue. Modeling Method for Servo Motor System Based on Model Reference Adaptive System[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(4):275-279.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-03-28
  • 出版日期:
文章二維碼