ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CNN-S-GPR的寧夏枸杞高光譜影像估產(chǎn)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

寧夏重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020BFG02013)


Yield Estimation Method of Ningxia Wolfberry Using Hyperspectral Images Based on CNN-S-GPR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)現(xiàn)有遙感估產(chǎn)方法未對(duì)通道間依賴關(guān)系建模和無(wú)法整合影像外其他特征的問(wèn)題,以寧夏枸杞估產(chǎn)為例,,提出了一種基于CNN-S-GPR的高光譜影像年際作物估產(chǎn)模型。首先,運(yùn)用直方圖降維,、歸一化、時(shí)間序列融合和維度轉(zhuǎn)換4種特征工程方法構(gòu)建枸杞估產(chǎn)數(shù)據(jù)集,,實(shí)現(xiàn)多波段,、多時(shí)相影像融合;然后,,采用卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)提取數(shù)據(jù)集特征,,簡(jiǎn)化特征提取操作;接著,,融合通道注意力機(jī)制,,以表征不同通道間的重要程度;最后,,引入高斯過(guò)程回歸,,整合影像特征及空間位置特征,進(jìn)一步提高估產(chǎn)準(zhǔn)確性,。實(shí)驗(yàn)結(jié)果表明,,與其他估產(chǎn)模型相比,該模型平均相對(duì)誤差和均方根誤差下降了0.44~0.95個(gè)百分點(diǎn)和52.48~82.65t,,且決定系數(shù)達(dá)到0.91,。結(jié)合寧夏16個(gè)縣的枸杞年際產(chǎn)量實(shí)現(xiàn)了復(fù)雜擬合,對(duì)全區(qū)農(nóng)業(yè)規(guī)劃布局及可持續(xù)發(fā)展具有參考價(jià)值。

    Abstract:

    Aiming at the problems of the existing remote sensing yield estimation methods that do not model the dependence between channels and ignore integrating other features outside the image, an interannual crop yield estimation method based on CNN-S-GPR was proposed for hyperspectral images, taking Ningxia wolfberry yield as an example. Firstly, histogram statistics, histogram normalization and time series fusion were used to construct the data set, which realized the fusion of multi-band and multi-temporal images. Secondly, using convolutional neural networks to extract features from the data set; and then the channel attention mechanism was used to characterize the importance of different channels. Finally, Gaussian process regression (GPR) was introduced to explicitly integrate image features and spatial location features further improved the accuracy of production estimation. The test results showed that compared with that of other yield estimation models, MRE and RMSE of this model were decreased from 0.44 percentage points to 0.95 percentage points and from 52.48t to 82.65t, respectively, and the coefficient of determination reached 0.91. It realized the complex fitting of the output of wolfberry in 16 counties of Ningxia during the year, which was of great significance to the agricultural planning layout, policy adjustment and sustainable development.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉立波,王濤,張鵬.基于CNN-S-GPR的寧夏枸杞高光譜影像估產(chǎn)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):250-257. LIU Libo, WANG Tao, ZHANG Peng. Yield Estimation Method of Ningxia Wolfberry Using Hyperspectral Images Based on CNN-S-GPR[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):250-257.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-08-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-15
  • 出版日期:
文章二維碼