ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于全局特征提取的農(nóng)作物病害識(shí)別模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

甘肅農(nóng)業(yè)大學(xué)盛彤笙創(chuàng)新基金項(xiàng)目(GSAU-STS-2021-16),、甘肅農(nóng)業(yè)大學(xué)青年導(dǎo)師基金項(xiàng)目(GAU-QDFC-2021-18)和甘肅省自然科學(xué)基金項(xiàng)目(20JR5RA023)


Deep Learning Network for Crop Disease Recognition with Global Feature Extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)現(xiàn)階段特征提取網(wǎng)絡(luò)當(dāng)測(cè)試樣本出現(xiàn)歪斜,、模糊、缺損等變化時(shí)識(shí)別效果不夠理想,,利用訓(xùn)練樣本擴(kuò)充,、變換、縮放等方式改善網(wǎng)絡(luò)性能并不能動(dòng)態(tài)地滿足實(shí)際的復(fù)雜病害圖像識(shí)別任務(wù)的問題,,在ResNet50中引入雙層注意力機(jī)制與通道特征提取機(jī)制,,設(shè)計(jì)基于全局特征提取的深度學(xué)習(xí)網(wǎng)絡(luò)(Global feature deep learning network,GFDL-Net),,該網(wǎng)絡(luò)包括通道特征提取子網(wǎng)絡(luò)(Squeeze and excitation net,,SE-Net)和雙注意力特征提取子網(wǎng)絡(luò)(Double feature extraction net,DFE-Net),,分別從通道空間特征提取與平面關(guān)鍵點(diǎn)特征提取兩方面改善了網(wǎng)絡(luò)的全局特征提取能力,。為了驗(yàn)證GFDL-Net的有效性,對(duì)辣椒,、馬鈴薯,、番茄等15種病害圖像加入不同角度的旋轉(zhuǎn)、色彩變換等測(cè)試,,發(fā)現(xiàn)在樣本加入旋轉(zhuǎn)后與ResNet50,、BoTNet、EfficientNet相比,,平均識(shí)別準(zhǔn)確率分別高出20.05,、18.62、21.97個(gè)百分點(diǎn),;加入明暗度,、飽和度,、對(duì)比度變換后與ResNet50、BoTNet,、 EfficientNet相比,,平均識(shí)別準(zhǔn)確率分別高出3.57、0.53,、3.98個(gè)百分點(diǎn),,而識(shí)別速度分別為ResNet50、BoTNet,、EfficientNet的4.4,、4.9、2.0倍,。試驗(yàn)證明GFDL-Net在圖像全局特征提取能力方面的改進(jìn)能有效提升網(wǎng)絡(luò)的泛化能力與魯棒性,,可將其應(yīng)用于解決變化樣本的農(nóng)作物病害識(shí)別任務(wù)中。

    Abstract:

    In view of the fact that the recognition effect of the feature extraction network at this stage is not ideal when the test samples are skewed, fuzzy, defective and other changes, improving the network performance by expanding, transforming, scaling and other ways of training samples cannot dynamically meet the problem of the actual complex disease image recognition task, In ResNet50, a global feature deep learning network (GFDL-Net) based on global feature extraction was designed by introducing a two-layer attention mechanism and channel feature extraction mechanism. The network included channel feature extraction sub network (Squeeze and exception net, SE-Net) and double feature extraction net (DFE-Net), the global feature extraction ability of the network was improved from two aspects: channel space feature extraction and plane key point feature extraction. In order to verify the effectiveness of GFDL-Net, tests such as rotation at different angles and color transformation were added to the images of 15 diseases such as pepper, potato and tomato. It was found that the average recognition accuracy was 20.05 percentage points, 18.62 percentage points and 21.97 percentage points higher than that of ResNet50, BoTNet and EfficientNet respectively after adding rotation to the samples. Compared with ResNet50, BoTNet and EfficientNet, the average recognition accuracy was 3.57 percentage points, 0.53 percentage points and 3.98 percentage points higher, and the recognition speed was 4.4 times, 4.9 times and 2.0 times of ResNet50, BoTNet and EfficientNet respectively after adding the shading, saturation and contrast transformations. The experiment proved that the improvement of GFDL-Net in the global feature extraction ability of images can effectively improve the generalization ability and robustness of the network, which can be used to solve the crop disease recognition task of changing samples.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭小燕,于帥卿,沈航馳,李龍,杜佳舉.基于全局特征提取的農(nóng)作物病害識(shí)別模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(12):301-307. GUO Xiaoyan, YU Shuaiqing, SHEN Hangchi, LI Long, DU Jiaju. Deep Learning Network for Crop Disease Recognition with Global Feature Extraction[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):301-307.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-07-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-10-07
  • 出版日期:
文章二維碼