ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于激光雷達與深度相機融合的SLAM算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省科技重大專項項目(201903a05020029)


SLAM Algorithm Based on Fusion of LiDAR and Depth Camera
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對單一傳感器地圖構建時存在環(huán)境表征不充分,無法為移動機器人自主導航提供完整環(huán)境地圖等問題,,本文通過將激光雷達與深度相機獲取的環(huán)境信息進行互補融合,,構建出更完整精確的柵格地圖。首先,,對傳統(tǒng)ORB-SLAM2算法進行增強,,使其具備稠密點云地圖構建、八叉樹地圖構建以及柵格地圖構建等功能,。其次,,為驗證增強后ORB-SLAM2算法的性能,在fr1_desk1數(shù)據(jù)集和真實場景下進行測試,,數(shù)據(jù)顯示增強后ORB-SLAM2算法絕對位姿誤差降低52.2%,,相機跟蹤軌跡增長14.7%,定位更加精準,。然后,,D435i型深度相機采用增強型ORB-SLAM2算法,激光雷達采用的Gmapping-Slam算法,,按照貝葉斯估計的規(guī)則進行互補融合構建全局柵格地圖,。最后,搭建實驗平臺進行驗證,,并分別與深度相機和激光雷達2個傳感器建圖效果進行對比,。實驗結果表明,本文融合算法對周圍障礙物的識別能力更強,,可獲取更完整的環(huán)境信息,,地圖構建更加清晰精確,滿足移動機器人導航與路徑規(guī)劃的需要,。

    Abstract:

    To address the problems of inadequate environmental representation in single sensor map construction and inability to provide a complete environmental map for autonomous navigation of mobile robots, a more complete and accurate raster map was constructed by complementary fusion of environmental information obtained from LiDAR and depth cameras. Firstly, the traditional ORB-SLAM2 algorithm was enhanced to have the functions of dense point cloud map construction, octree map construction and raster map construction. Secondly, in order to verify the performance of the enhanced ORB-SLAM2 algorithm, it was tested in the fr1_desk1 dataset and real scenes, and the data showed that the absolute position error of the enhanced ORB-SLAM2 algorithm was reduced by 52.2%, and the camera tracking trajectory grew by 14.7%, which made the localization more accurate. Then the D435i type depth camera adopted the enhanced ORB-SLAM2 algorithm and the Gmapping-Slam algorithm adopted by LiDAR, and constructed the global raster map by complementary fusion according to the rules of Bayesian estimation. Finally, an experimental platform was built for validation and compared with the map building effect of the two sensors, depth camera and LiDAR, respectively. The experimental results showed that the fusion algorithm had a stronger ability to recognize the surrounding obstacles, which can obtain more complete environmental information, and the map construction was more clear and precise, which met the needs of mobile robot navigation and path planning.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉慶運,楊華陽,劉濤,吳天躍,盧超.基于激光雷達與深度相機融合的SLAM算法[J].農(nóng)業(yè)機械學報,2023,54(11):29-38. LIU Qingyun, YANG Huayang, LIU Tao, WU Tianyue, LU Chao. SLAM Algorithm Based on Fusion of LiDAR and Depth Camera[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):29-38.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼