ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v7-tiny的甜椒畸形果識別算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

嶺南現(xiàn)代農(nóng)業(yè)科學與技術(shù)廣東省實驗室科研項目(NT2021009),、國家自然科學基金面上項目(32372002)、廣東省農(nóng)業(yè)科學院科技人才引進專項資金項目(R2019YJ-YB3003),、廣東省農(nóng)業(yè)科學院協(xié)同創(chuàng)新中心項目(XT202201)和廣東省重點領域研發(fā)計劃項目(2023B0202090001)


Malformed Sweet Pepper Fruit Identification Algorithm Based on Improved YOLO v7-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    甜椒在生長發(fā)育過程中容易產(chǎn)生畸形果,,機器代替人工對甜椒畸形果識別和摘除一方面可提高甜椒品質(zhì)和產(chǎn)量,另一方面可解決當前人工成本過高,、效率低下等問題,。為實現(xiàn)機器人對甜椒果實的識別,提出了一種基于改進YOLO v7-tiny目標檢測模型,,用于區(qū)分正常生長和畸形生長的甜椒果實,。將無參數(shù)注意力機制(Parameterfree attention module, SimAM)融合到骨干特征提取網(wǎng)絡中,增強模型的特征提取和特征整合能力,;用Focal-EIOU(Focal and efficient intersection over union)損失替換原損失函數(shù)CIOU(Complete intersection over union),,加快模型收斂并降低損失值;使用SiLU激活函數(shù)代替原網(wǎng)絡中的Leaky ReLU,,增強模型的非線性特征提取能力,。試驗結(jié)果表明,,改進后的模型整體識別精確度、召回率,、平均精度均值(Mean average precision, mAP)mAP0.5,、mAP0.5-0.95分別為99.1%、97.8%,、98.9%,、94.5%,與改進前相比,,分別提升5.4,、4.7、2.4,、10.7個百分點,,模型內(nèi)存占用量為 10.6MB,單幅圖像檢測時間為4.2ms,。與YOLO v7,、Scaled-YOLO v4、YOLOR-CSP等目標檢測模型相比,,模型在F1值上與YOLO v7相同,,相比Scaled-YOLO v4、YOLOR-CSP分別提升0.7,、0.2個百分點,,在mAP0.5-0.95上分別提升0.6、1.2,、0.2個百分點,,而內(nèi)存占用量僅為上述模型的14.2%、10.0%,、10.0%,。本文所提出的模型實現(xiàn)了小體量而高精度,便于在移動端進行部署,,為后續(xù)機械化采摘和品質(zhì)分級提供技術(shù)支持,。

    Abstract:

    Sweet peppers are prone to malformed fruits during the growth and development process. Machine replace manual identification and removal of deformed sweet peppers, on the one hand, it can improve the quality and yield of sweet peppers;on the other hand, it can solve the current problems of high labor costs and low efficiency. In order to realize the identification of sweet pepper fruits by robots, an improved YOLO v7-tiny target detection model was proposed to distinguish between normal and abnormal growth of sweet pepper fruits. The parameterfree attention module (SimAM) was integrated into the backbone feature extraction network to enhance the feature extraction and feature integration capabilities of the model;the original loss function CIOU was replaced with Focal-EIOU loss, Focal-EIOU can speed up model convergence and reduce loss value;the SiLU activation function was used to replace the Leaky ReLU in the original network to enhance the nonlinear feature extraction ability of the model. The test results showed that the overall recognition precision, recall rate, mAP0.5 and mAP0.5-0.95 of the improved model were 99.1%, 97.8%, 98.9% and 94.5%, compared with that before improvement, it was increased by 5.4 percentage points, 4.7 percentage points, 2.4 percentage points, and 10.7 percentage points, respectively, the model weight size was 10.6MB, and the single image detection time was 4.2ms. Compared with YOLO v7, scaled-YOLO v4, YOLOR-CSP target detection models, the model had the same F1 score as YOLO v7. Compared with scaled-YOLO v4, YOLOR-CSP was increased by 0.7 and 0.2 percentage points, respectively, mAP0.5-0.95 was increased by 0.6 percentage points, 1.2 percentage points and 0.2 percentage points, respectively, and the weight size was only 14.2%, 10.0%, 10.0% of the above model. The model proposed achieved small size and high precision, and it was easy to deploy on the mobile terminal, providing technical support for subsequent mechanized picking and quality grading.

    參考文獻
    相似文獻
    引證文獻
引用本文

王昱,姚興智,李斌,徐賽,易振峰,趙俊宏.基于改進YOLO v7-tiny的甜椒畸形果識別算法[J].農(nóng)業(yè)機械學報,2023,54(11):236-246. WANG Yu, YAO Xingzhi, LI Bin, XU Sai, YI Zhenfeng, ZHAO Junhong. Malformed Sweet Pepper Fruit Identification Algorithm Based on Improved YOLO v7-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):236-246.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼