ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量級RepVIT的農(nóng)機具工況識別方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃青年科學家項目(2022YFD2000300)


Lightweight RepVIT-based Working Condition Recognition Method for Agricultural Implements
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決田間復(fù)雜環(huán)境下拖拉機機載農(nóng)機具監(jiān)測困難,、模型參數(shù)量過大等問題,提出了一種基于輕量化RepVIT的農(nóng)機具識別模型TMAInet,。利用自主開發(fā)的農(nóng)機服務(wù)平臺“農(nóng)業(yè)機械化精準作業(yè)平臺暨希望田野冶收集了6種工作狀態(tài)的農(nóng)機具數(shù)據(jù)集,并通過Copy-paste等數(shù)據(jù)增強方法將訓練集擴增至6627幅?;赗epVIT網(wǎng)絡(luò)模型框架,設(shè)計了一種卷積前饋模塊(CFF)以提升不同尺度細粒度特征提取能力,引入了注意力機制ECA以優(yōu)化模型參數(shù)結(jié)構(gòu)并簡化特征提取模塊,。通過Pre-training+Fine-tuning(PF)遷移學習方法對模型進行了訓練,并在Jetsonnano邊緣設(shè)備上進行了部署。實驗結(jié)果表明,通過PF遷移學習方法,TMAInet模型的識別準確率,、F1分數(shù)和召回率分別達到99.13%,、98.53%和98.78%,相較于原始的RepVIT模型分別提升1.86、3.04,、1.95個百分點,在邊緣設(shè)備端保持幀速率73f/s的同時參數(shù)量降低至7.3×106,。TMAInet能夠在實際應(yīng)用中準確、高效監(jiān)測農(nóng)機具常見類別,為無人化智慧農(nóng)場的發(fā)展提供技術(shù)參考,。

    Abstract:

    Aiming to address the problems of difficulty in monitoring tractor-mounted agricultural implements in complex field environments and the excessive amount of model parameters, a lightweight RepViT-based agricultural implements recognition model, tractor-mounted agricultural implements net (TMAInet ), was proposed. Firstly, the self-developed agricultural machinery service platform ‘Agricultural Mechanisation Precision Operation Platform’ was used to collect the datasets of agricultural implements in six working states, and the training set was expanded to 6 627 frames by data enhancement methods such as copy-paste. Secondly, based on the RepVIT network model framework, a convolutional feed-forward module ( CFF) was designed to improve the ability of fine-grained feature extraction at different scales, and an attention mechanism, ECA, was introduced to optimize the model parameter structure and simplify the feature extraction module. Finally, the model was trained by pre-training + fine-tuning (PF) migration learning method and deployed on Jetson nano edge devices. The experimental results showed that the recognition accuracy, F1 score and recall of the TMAInet model reached 99.13% , 98.53 and 98.78% , respectively, by the PF migration learning method. Compared with the original RepVIT model, the recognition accuracy, F1 score and recall were improved by 1.86 percentage points, 3.04 percentage points and 1.95 percentage points, respectively, and the number of parameters was reduced to 7.3 × 10 6 while maintaining 73 f / s at the edge device side. TMAInet was able to accurately and efficiently monitor the common categories of agricultural implements in practical applications, and it can provide a technical reference for the development of unmanned smart farms.

    參考文獻
    相似文獻
    引證文獻
引用本文

安麒麟,汪鳳珠,劉陽春,鄧學,周利明,趙博,偉利國.基于輕量級RepVIT的農(nóng)機具工況識別方法研究[J].農(nóng)業(yè)機械學報,2025,56(2):187-194,,205. AN Qilin, WANG Fengzhu, LIU Yangchun, DENG Xue, ZHOU Liming, ZHAO Bo, WEI Liguo. Lightweight RepVIT-based Working Condition Recognition Method for Agricultural Implements[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):187-194,205.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼