ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于分布式聯(lián)邦學(xué)習(xí)的農(nóng)產(chǎn)品供應(yīng)鏈跨域風(fēng)險(xiǎn)信息檢測(cè)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFF1101103)、國(guó)家自然科學(xué)基金項(xiàng)目(62402020)和北京市教育委員會(huì)“市屬高校分類發(fā)展———北京工商大學(xué)數(shù)字商學(xué)新興交叉學(xué)科平臺(tái)建設(shè)冶項(xiàng)目


Distributed Federated Learning Framework for Cross-domain Risk Information Detection in Agricultural Product Supply Chains
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    農(nóng)產(chǎn)品供應(yīng)鏈安全事關(guān)國(guó)家發(fā)展與社會(huì)穩(wěn)定,但其多環(huán)節(jié)、多主體結(jié)構(gòu)使得風(fēng)險(xiǎn)信息共享在隱私保護(hù)與精準(zhǔn)檢測(cè)之間面臨重大挑戰(zhàn)。融合區(qū)塊鏈與聯(lián)邦學(xué)習(xí)技術(shù),構(gòu)建面向農(nóng)產(chǎn)品供應(yīng)鏈的跨域風(fēng)險(xiǎn)信息可信共享與檢測(cè)模型。首先,提出一種基于分布式聯(lián)邦學(xué)習(xí)的跨域風(fēng)險(xiǎn)信息交互框架,實(shí)現(xiàn)農(nóng)產(chǎn)品供應(yīng)鏈風(fēng)險(xiǎn)信息可信流轉(zhuǎn),然后,構(gòu)建基于孤立森林異常數(shù)據(jù)檢測(cè)算法的農(nóng)產(chǎn)品供應(yīng)鏈風(fēng)險(xiǎn)信息多級(jí)檢測(cè)模式,最后,設(shè)計(jì)風(fēng)險(xiǎn)貢獻(xiàn)和信用值評(píng)估模型以確保農(nóng)產(chǎn)品供應(yīng)鏈參與方擁有持續(xù)共享核心風(fēng)險(xiǎn)數(shù)據(jù)的動(dòng)力,同時(shí)動(dòng)態(tài)評(píng)估和管理農(nóng)產(chǎn)品供應(yīng)鏈節(jié)點(diǎn)的貢獻(xiàn)度和可信度。各項(xiàng)實(shí)驗(yàn)結(jié)果表明,本文所提出的模型能夠顯著提升跨域風(fēng)險(xiǎn)信息共享效率與預(yù)測(cè)準(zhǔn)確性,為農(nóng)產(chǎn)品安全領(lǐng)域提供一種兼顧風(fēng)險(xiǎn)信息隱私保護(hù)和高效處理的可信共享解決方案。

    Abstract:

    The security of agricultural product supply chains plays a critical role in national development and social stability. However, the inherently complex structure of these supply chains—characterized by multiple stages, diverse stakeholders, and heterogeneous data sources—poses significant challenges for risk information sharing, especially in balancing data privacy protection with accurate risk detection. In response, a novel cross-domain risk information detection and trustworthy sharing model was proposed by integrating blockchain and federated learning technologies. Specifically, a distributed federated learning-based interaction framework was established to enable secure and decentralized circulation of risk information across different supply chain entities. To enhance anomaly detection, a multi-level evaluation mechanism based on the isolation forest algorithm was introduced to identify abnormal data patterns at various stages of the supply chain. Additionally, a dynamic risk contribution and credit evaluation model was developed to incentivize stakeholders to continuously share high-value risk data, while assessing their trustworthiness and participation levels in real time. Extensive experiments validated the effectiveness of the proposed approach in improving the efficiency, accuracy, and reliability of cross-domain risk information sharing. This work can provide a scalable and privacy-preserving solution tailored for the agricultural supply chain, offering practical implications for intelligent risk governance and data-driven decision-making in agri-food systems.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張新,肖柳君,許繼平,于家斌,譚學(xué)澤,趙峙堯.基于分布式聯(lián)邦學(xué)習(xí)的農(nóng)產(chǎn)品供應(yīng)鏈跨域風(fēng)險(xiǎn)信息檢測(cè)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):56-66,89. ZHANG Xin, XIAO Liujun, XU Jiping, YU Jiabin, TAN Xueze, ZHAO Zhiyao. Distributed Federated Learning Framework for Cross-domain Risk Information Detection in Agricultural Product Supply Chains[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):56-66,89.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-03-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼