ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v8的玉米大豆間套復(fù)種作物行導(dǎo)航線提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(52265033、51865022)和云南省自然科學(xué)基金項(xiàng)目(202401AS070115)


Extraction Method of Navigation Lines for Maize Soybean Intercropping Based on Improved YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對玉米大豆間套復(fù)種場景下導(dǎo)航線提取算法在復(fù)雜農(nóng)田環(huán)境中精度低和適應(yīng)性差等問題,提出一種基于改進(jìn)YOLO v8的作物行間導(dǎo)航線提取方法,以提升自主移動底盤在田間作業(yè)中的導(dǎo)航精度。針對玉米大豆作物行間專項(xiàng)分割任務(wù),以YOLO v8為基礎(chǔ)融合StarNet網(wǎng)絡(luò),并優(yōu)化檢測頭構(gòu)建了StarNet-YOLO主干網(wǎng)絡(luò)。通過自主設(shè)計(jì)的ASPPFE模塊、深度可分離卷積和CSE結(jié)構(gòu)等策略優(yōu)化,同時(shí)利用LAMP剪枝算法對其輕量化。此外,引入Douglas-Peucker算法獲取逼近作物行間輪廓,并提出評分機(jī)制確定輪廓的起始線段和終點(diǎn)線段中點(diǎn),進(jìn)而實(shí)現(xiàn)作物行導(dǎo)航線的精確擬合。消融試驗(yàn)結(jié)果表明,ASPPFE的mAP50seg(交并比為0.5時(shí)實(shí)例分割的平均精度均值)達(dá)到99.5%,其mAP50-95seg(交并比為0.5~0.95時(shí)實(shí)例分割的平均精度均值)比SPPELAN、SPPF和ASPPF分別提升1.0、1.0、0.4個百分點(diǎn)。經(jīng)剪枝率25%優(yōu)化后的StarNet-YOLO網(wǎng)絡(luò),mAP50-95seg僅降低0.02個百分點(diǎn),而推理速度從390f/s提升至563f/s,浮點(diǎn)運(yùn)算量從7.2×109降至4.7×109。在同一數(shù)據(jù)集下對YOLO v5、YOLO v7、YOLO v8和改進(jìn)YOLO v8進(jìn)行對比發(fā)現(xiàn),StarNet-YOLO網(wǎng)絡(luò)mAP50-95seg比其他3種算法分別提升5.5、4.8、2.8個百分點(diǎn)。作物行間導(dǎo)航線擬合驗(yàn)證結(jié)果表明,平均角度誤差和距離誤差分別為2.01°和23.17像素。在復(fù)雜農(nóng)田環(huán)境下本文導(dǎo)航線提取算法表現(xiàn)出優(yōu)異性能,實(shí)現(xiàn)檢測速度與精度平衡,為玉米大豆等農(nóng)作物田間作業(yè)自主機(jī)器人視覺導(dǎo)航提供了新的技術(shù)思路。

    Abstract:

    Aiming to addressing challenges of low accuracy and poor adaptability of navigation line extraction algorithms in complex agricultural environments for maize-soybean intercropping scenarios, an improved YOLO v8-based method for extracting crop row navigation lines was proposed to enhance autonomous mobile platform navigation precision during field operations. For the specialized task of segmenting maize and soybean crop rows, a StarNet-YOLO backbone network was constructed by integrating the StarNet network with YOLO v8 and optimizing the detection head. The network was enhanced through strategies, including a custom-designed ASPPFE module, depth-separable convolution, and CSE structure optimization, while also implementing lightweight design by using the LAMP pruning algorithm. Additionally, the Douglas-Peucker algorithm was introduced to approximate crop row contours, and a scoring mechanism was developed to determine the midpoints of contour start and end segments, enabling precise fitting of crop row navigation lines. Ablation experiments showed that ASPPFE achieved an mean average precision for instance segmentation at 0.5 IoU (mAP50seg) of 99.5%, with its mAP across IoU thresholds 0.5~0.95 (mAP50-95seg) improved by 1.0, 1.0, and 0.4 percentage points compared with that of SPPELAN, SPPF, and ASPPF, respectively. After 25% pruning optimization, the StarNet-YOLO network’s mAP50-95seg was decreased by only 0.02 percentage points, while inference speed was increased from 390f/s to 563f/s, and floating-point operations were reduced from 7.2×109 to 4.7×109. Comparative testing on the same dataset showed that StarNet-YOLO’s mAP50-95seg outperformed YOLO v5, YOLO v7, and baseline YOLO v8 by 5.5, 4.8, and 2.8 percentage points, respectively. Validation of crop row navigation line fitting revealed average angular and distance errors of 2.01° and 23.17 pixels. This navigation line extraction algorithm demonstrated excellent performance in complex agricultural environments, balancing detection speed and accuracy, and provided a technical approach for visual navigation of autonomous robots operating in maize, soybean, and other crop fields.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱惠斌,李仕,白麗珍,王明鵬,賈宇軒,蘭冀賢.基于改進(jìn)YOLO v8的玉米大豆間套復(fù)種作物行導(dǎo)航線提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):205-217. ZHU Huibin, LI Shi, BAI Lizhen, WANG Mingpeng, JIA Yuxuan, LAN Jixian. Extraction Method of Navigation Lines for Maize Soybean Intercropping Based on Improved YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):205-217.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-03-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼