ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v8 STSF的多類別害蟲識別算法與監(jiān)測系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

安徽省科技重大專項(xiàng)(202203a06020007)、福建省重點(diǎn)科技創(chuàng)新研究項(xiàng)目 (2023XQ005)和安徽省高校創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2023AH010039)


Multi-category Pest Identification Algorithm and Monitoring System Based on YOLO v8 STSF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水稻害蟲危害十分巨大,不僅對水稻造成直接的生理破壞,還傳播病害,嚴(yán)重時(shí)導(dǎo)致稻田絕收,造成難以估量的損失。水稻害蟲精準(zhǔn)識別與實(shí)時(shí)監(jiān)測是減少農(nóng)業(yè)損失的關(guān)鍵,針對蟲情測報(bào)燈圖像中害蟲密集、體態(tài)差異細(xì)微及小目標(biāo)漏檢等問題,提出一種基于YOLO v8-STSF模型的水稻害蟲智能識別方法。通過引入Swin Transformer模塊增強(qiáng)骨干網(wǎng)絡(luò)的多尺度特征提取能力,結(jié)合分布移位卷積(DSConv)優(yōu)化頸部網(wǎng)絡(luò)特征融合,并采用Focal EIoU損失函數(shù)提升密集小目標(biāo)定位精度。構(gòu)建了包含多類水稻害蟲的7000幅圖像數(shù)據(jù)集進(jìn)行識別驗(yàn)證,YOLO v8-STSF模型在測試集上的精確率為95.45%、召回率為90.45%、F1值為90.03%,較原YOLO v8模型分別提升2.13、0.33、3.09個(gè)百分點(diǎn),在PC端的推理速度為32f/s,滿足實(shí)時(shí)需求。同時(shí)以Web端監(jiān)測系統(tǒng)為基礎(chǔ),設(shè)計(jì)基于Android移動(dòng)端的蟲情監(jiān)測系統(tǒng),在田間測試中系統(tǒng)平均響應(yīng)時(shí)間為1.38s,識別準(zhǔn)確率為96.34%,漏檢率為3.86%。研究結(jié)果可為水稻害蟲精準(zhǔn)防控提供高效技術(shù)支持,推動(dòng)農(nóng)業(yè)病蟲害監(jiān)測智能化發(fā)展。

    Abstract:

    Rice pests critically threaten rice cultivation by inflicting direct physiological damage, spreading diseases, and potentially causing catastrophic field extinction, leading to significant agricultural losses. To address challenges such as dense pest clusters, subtle morphological variations, and frequent small-target missed detections in pest detection lamp images, an intelligent recognition method was proposed by using an enhanced YOLO v8-STSF model. Key innovations included integrating a Swin Transformer module to boost backbone network multiscale feature extraction, optimizing neck network feature fusion via distribution shift convolution (DSConv), and adopting the Focal EIoU loss function to enhance small-target localization. Validated on a 7000 image multi-species pest dataset, the improved model achieved 95.45% of precision, 90.45% of recall, and 90.03% of F1-score, surpassing the original YOLO v8 by 2.13, 0.33, and 3.09 percentage points, respectively, while operating at 32f/s for real-time PC-based monitoring. A dual-platform system (Web and Android mobile) demonstrated field performance with 1.38s average response time, 96.34% of accuracy, and 3.86% of missed detection rate. This system can provide an efficient solution for precision pest control and advance intelligent agricultural monitoring.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王興旺,查海涅,盧浩男,王禹彬,吳東昇,王旭峰,胡燦,陳學(xué)永.基于YOLO v8 STSF的多類別害蟲識別算法與監(jiān)測系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):228-236. WANG Xingwang, ZHA Hainie, LU Haonan, WANG Yubin, WU Dongsheng, WANG Xufeng, HU Can, CHEN Xueyong. Multi-category Pest Identification Algorithm and Monitoring System Based on YOLO v8 STSF[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):228-236.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-03-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼