ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于巡檢機(jī)器人和改進(jìn)RT-DETR的奶牛挑食行為識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFD2000704)和國家自然科學(xué)基金項(xiàng)目(32072786)


Selective Feeding Behavior Recognition Method for Dairy Cows Based on Inspection Robot and Improved RT-DETR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前復(fù)雜環(huán)境下奶牛在采食過程中挑食行為與采食行為差異不大、識(shí)別精度較低、人工識(shí)別勞動(dòng)強(qiáng)度大等問題,本文提出了一種基于巡檢機(jī)器人和改進(jìn)RT-DETR模型的奶牛挑食行為識(shí)別方法。根據(jù)奶牛采食特性設(shè)計(jì)巡檢機(jī)器人采集奶牛采食過程數(shù)據(jù),分中午、下午和晚上3個(gè)時(shí)間段分別在3個(gè)牛棚進(jìn)行采集,最終構(gòu)建包含3個(gè)時(shí)間段共計(jì)10280幅奶牛采食數(shù)據(jù)集。對(duì)RT-DETR模型進(jìn)行改進(jìn),在RT-DETR模型淺層中引入DAttention(DAT)模塊和Bi-Level Routing Attention(BRA)模塊融合的DBRA結(jié)構(gòu),建立了新的圖像特征提取結(jié)構(gòu),提升輸入圖像局部和全局特征深度融合能力;在RT-DETR模型編碼器中融合Efficient Multi-Scale Attention(EMA)模塊,增強(qiáng)了提取高層次語義信息能力,更好地聯(lián)系上下文信息。試驗(yàn)結(jié)果表明,改進(jìn)后模型在奶牛采食視頻數(shù)據(jù)集平均精度均值([email protected])為99.1%,模型內(nèi)存占用量為39.6MB,浮點(diǎn)計(jì)算量為4.67×1010,相較于原模型平均精度均值提高7.4個(gè)百分點(diǎn),模型內(nèi)存占用量降低0.9MB,浮點(diǎn)計(jì)算量減少2%。與Sparse R-CNN、YOLO v7-L、YOLO v8n、DINO、Swin Transformer和DETR模型相比,平均精度均值(mAP@50)分別提高8.5、9.8、7.8、6.6、11.4、9.5個(gè)百分點(diǎn)。研究結(jié)果可以為實(shí)現(xiàn)畜牧養(yǎng)殖智能化提供技術(shù)支持。

    Abstract:

    Aiming to address the challenges of low recognition accuracy, high labor intensity in manual identification, and minimal behavioral differences between selective feeding and normal feeding in dairy cows under complex environmental conditions, a method for identifying selective feeding behavior was proposed based on inspection robots and an improved RT-DETR model. An inspection robot was designed according to dairy cows-feeding characteristics to collect feeding process data. Data collection was conducted in three barns during three time periods (noon, afternoon, and night), ultimately establishing a dataset containing 10280 feeding behavior images across these periods. The RT-DETR model was enhanced by integrating a DBRA structure, which combined the DAttention (DAT) module and Bi-Level Routing Attention (BRA) module into the shallow layers, creating a novel image feature extraction architecture to improve the deep fusion capability of local and global features. Additionally, the Efficient Multi-Scale Attention (EMA) module was incorporated into the model encoder to strengthen high-level semantic information extraction and contextual correlation. Experimental results demonstrated that the improved model achieved a mean average precision ([email protected]) of 99.1% on the dairy cow feeding video dataset, with a model memory occupancy of 39.6MB and floating-point operations (FLOPs) of 4.67×1010. Compared with the original model, the [email protected] was increased by 7.4 percentage points, memory occupancy was reduced by 0.9MB, and FLOPs was decreased by 2%. When compared with Sparse R-CNN, YOLO v7-L, YOLO v8n, DINO, Swin Transformer, and DETR models, the proposed model exhibited mAP@50 improvements of 8.5, 9.8, 7.8, 6.6, 11.4 and 9.5 percentage points, respectively. The findings enabled accurate differentiation between normal feeding and selective feeding behaviors, providing technical support for intelligent livestock farming.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

田富洋,張立印,張帥揚(yáng),宋占華,于鎮(zhèn)偉,張姬.基于巡檢機(jī)器人和改進(jìn)RT-DETR的奶牛挑食行為識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):258-267. TIAN Fuyang, ZHANG Liyin, ZHANG Shuaiyang, SONG Zhanhua, YU Zhenwei, ZHANG Ji. Selective Feeding Behavior Recognition Method for Dairy Cows Based on Inspection Robot and Improved RT-DETR[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):258-267.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-06-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼