ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于微型光譜儀和Transformer模型的便攜式土壤全氮含量檢測儀研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2023YFD1701000)和中國農(nóng)業(yè)大學(xué)2115人才工程項目


Portable Soil Total Nitrogen Content Detector Based on Miniature Spectrometer and Transformer Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    便攜式土壤全氮含量近紅外光譜檢測儀具有快速、非破壞性和高效性等優(yōu)點,但已開發(fā)的儀器多采用濾光片式設(shè)計,光譜通道數(shù)量有限會導(dǎo)致部分關(guān)鍵信息丟失,且無法采用基于深度學(xué)習(xí)的預(yù)測模型。隨著微型光譜儀的商業(yè)化,本文開發(fā)了基于連續(xù)光譜的高精度土壤全氮含量檢測儀。檢測儀主要由NIR-R210型微型光譜儀、樹莓派、觸控屏、移動電源構(gòu)成,利用微型光譜儀獲取土壤光譜反射率,利用樹莓派中嵌入的深度學(xué)習(xí)模型進(jìn)行土壤全氮含量預(yù)測,然后在顯示屏中輸出預(yù)測結(jié)果。在中國農(nóng)業(yè)大學(xué)上莊實驗站采集了600份土壤樣本,分別對偏最小二乘法、門控循環(huán)單元和Transformer 3種模型的預(yù)測性能進(jìn)行了對比分析。結(jié)果表明,基于全光譜數(shù)據(jù)的Transformer深度學(xué)習(xí)模型表現(xiàn)最好,模型決定系數(shù)R2為0.89,均方根誤差(RMSE)為0.19g/kg,預(yù)測偏差(RPD)為2.96。進(jìn)一步對檢測儀進(jìn)行田間實時原位測試,田間環(huán)境下預(yù)測結(jié)果R2可達(dá)0.83,精度較高,可為智慧農(nóng)業(yè)中土壤養(yǎng)分實時檢測與精準(zhǔn)管理提供新的解決方案。

    Abstract:

    Portable near-infrared (NIR) spectroscopic detectors for soil total nitrogen content offer the advantages of rapid analysis, non-destructive measurement, and high efficiency. However, most existing instruments adopt filterbased designs with a limited number of spectral channels, which can lead to the loss of critical information and prevent the implementation of deep learning-based prediction models. With the commercialization of miniature spectrometers, a high-precision soil total nitrogen content detector was developed based on continuous spectral data. The detector primarily consisted of an NIR-R210 miniature spectrometer, a Raspberry Pi, a touchscreen display, and a portable power supply. The spectrometer was used to acquire soil spectral reflectance data, which were processed by a deep learning model embedded in the Raspberry Pi to predict soil total nitrogen content. The prediction results were then displayed in real time on the touchscreen. A total of 600 soil samples were collected from the Shangzhuang Experimental Station of China Agricultural University. The predictive performances of three models (partial least squares regression (PLSR), gated recurrent unit (GRU), and Transformer) were compared. Among them, the Transformer model based on full-spectrum data achieved the best performance, with a coefficient of determination (R2) of 0.89, a root mean square error (RMSE) of 0.19g/kg, and a residual predictive deviation (RPD) of 2.96. Further real-time in-situ field tests showed that the Transformer model maintained high accuracy under field conditions, with an R2 of up to 0.83. This portable device provided an effective solution for real-time soil nutrient detection and precision management in smart agriculture.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劇偉良,楊瑋,宋亞美,劉楠,李民贊.基于微型光譜儀和Transformer模型的便攜式土壤全氮含量檢測儀研究[J].農(nóng)業(yè)機械學(xué)報,2025,56(6):268-276. JU Weiliang, YANG Wei, SONG Yamei, LIU Nan, LI Minzan. Portable Soil Total Nitrogen Content Detector Based on Miniature Spectrometer and Transformer Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):268-276.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-03-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼