ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于混合蛙跳算法的果園土壤全氮含量高光譜預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2001400)和國家梨產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-28)


Hyperspectral Estimation of Total Nitrogen Content in Orchard Soil Based on Shuffled Frog Leaping Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    土壤全氮含量是土壤重要的養(yǎng)分指標(biāo),基于高光譜數(shù)據(jù)研究并構(gòu)建果園土壤全氮含量預(yù)測(cè)模型,為準(zhǔn)確檢測(cè)土壤全氮含量提供新方法。以江蘇省農(nóng)業(yè)科學(xué)院梨園土壤為研究對(duì)象,利用高光譜成像技術(shù)獲取土壤光譜反射率數(shù)據(jù),引入混合蛙跳算法和競(jìng)爭性自適應(yīng)加權(quán)采樣進(jìn)行光譜特征提取,并分別采用全波段和特征波段構(gòu)建偏最小二乘回歸、支持向量機(jī)、隨機(jī)森林和卷積神經(jīng)網(wǎng)絡(luò)模型對(duì)土壤全氮含量進(jìn)行估測(cè)。結(jié)果表明:原始光譜經(jīng)過多種預(yù)處理方法處理后,經(jīng)SG卷積平滑聯(lián)合標(biāo)準(zhǔn)正態(tài)變換預(yù)處理,全波段構(gòu)建的全氮預(yù)測(cè)模型表現(xiàn)最佳;基于混合蛙跳算法提取10個(gè)關(guān)鍵波段,占總波段數(shù)量的4.08%,有效降低了數(shù)據(jù)維度;基于混合蛙跳算法提取特征波段構(gòu)建的卷積神經(jīng)網(wǎng)絡(luò)模型表現(xiàn)優(yōu)異,此模型測(cè)試集決定系數(shù)為0.95、均方根誤差為0.21g/kg、相對(duì)分析誤差為3.97。研究結(jié)果表明應(yīng)用混合蛙跳算法能高效提取特征波段,降低數(shù)據(jù)維度,并且提高了土壤全氮含量估測(cè)精度,為果園土壤全氮含量準(zhǔn)確估測(cè)提供參考。

    Abstract:

    Soil total nitrogen is an important nutrient index of soil. The soil of pear orchard of Jiangsu Academy of Agricultural Sciences was taken as the research object, the soil spectral reflectance data were obtained by hyperspectral imaging technology, the shuffled frog leaping algorithm and competitive adaptive reweighted sampling in total nitrogen content in orchards was studied and constructed based on hyperspectral data, which provided a method for accurately detecting soil total nitrogen content. The competitive adaptive reweighted sampling were introduced for spectral feature extraction, and the partial least squares regression, support vector regression, random forest and convolutional neural network models were used to estimate the total nitrogen content of the soil by using the full band and the characteristic band, respectively. The results showed that after the original spectrum was processed by a variety of preprocessing methods, it was found that the total nitrogen prediction model constructed by SG convolution smoothing combined with standard normal transform pretreatment had the best performance. Based on the shuffled frog leaping algorithm, totally ten key bands were extracted, accounting for 4.08% of the total number of bands, which effectively reduced the data dimension. The convolutional neural network model constructed based on the shuffled frog leaping algorithm to extract feature bands performed well, and the coefficient of determination of the model test set was 0.95, the root mean square error was 0.21g/kg, and the relative analysis error was 3.97. The results showed that the shuffled frog leaping-algorithm can efficiently extract the feature bands, reduce the data dimension, and improve the estimation accuracy of soil total nitrogen content, which provided a reference for the accurate estimation of soil total nitrogen content in orchards.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮上奇,袁全春,黃凱,孫元昊,曾錦,呂曉蘭.基于混合蛙跳算法的果園土壤全氮含量高光譜預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):277-285. FENG Shangqi, YUAN Quanchun, HUANG Kai, SUN Yuanhao, ZENG Jin, Lü Xiaolan. Hyperspectral Estimation of Total Nitrogen Content in Orchard Soil Based on Shuffled Frog Leaping Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):277-285.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-03-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼