ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機與Sentinel-2A遙感數(shù)據(jù)協(xié)同的裸土期土壤含鹽量反演
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省重點研發(fā)項目(2022KW-47、2023-YBNY-221)、國家重點研發(fā)計劃項目(2022YFD1900802)、國家自然科學(xué)基金項目(51979233)和中央高校基本科研業(yè)務(wù)費專項資金項目(2452023078)


Soil Salinity Inversion during Bare Soil Period Based on Collaboration of UAV and Sentinel-2A Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    土壤鹽漬化是制約農(nóng)業(yè)生產(chǎn)的主要因素之一,精確監(jiān)測土壤鹽漬化尤為重要。本研究利用2023年4月8—12日在河套灌區(qū)4個實驗區(qū)域采集的地面實測含鹽量數(shù)據(jù)和無人機(Unmanned verial vehicle, UAV)數(shù)據(jù)構(gòu)建偏最小二乘回歸(Partial least squares regression, PLSR)、隨機森林(Random forest, RF)、反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation neural network, BPNN)和支持向量機回歸(Support vector machine regression, SVR) 4種土壤含鹽量(Soil salt content, SSC)反演模型。將最優(yōu)模型反演得到的實驗區(qū)土壤鹽分分布圖分別利用最鄰近法(Nearest)、雙線性內(nèi)插法(Bilinear)、立方卷積內(nèi)插法(Cubic) 3種方法重采樣到1、5、10m。計算同時期Sentinel-2A衛(wèi)星對應(yīng)像元提取平均值作為衛(wèi)星影像構(gòu)建反演模型的含鹽量,對比分析各尺度下的最優(yōu)模型,繪制河套灌區(qū)土壤鹽分分布圖。結(jié)果表明:使用Bilinear方法在3種尺度下的相關(guān)性均略優(yōu)于其他2種重采樣方法,5種尺度下構(gòu)建的模型精度由大到小依次為0.07m、1.m、5m、10m、原實測土壤含鹽量(OSSC),最優(yōu)尺度0.07m訓(xùn)練集和驗證集最佳模型決定系數(shù)R2比OSSC分別提升0.24和0.30,均方根誤差(RMSE)低0.06、0.19個百分點。本文探究了多尺度土壤含鹽量對衛(wèi)星多光譜遙感平臺反演土壤含鹽量模型精度的促進作用,為多源遙感大尺度精準土壤鹽漬化反演提供了有效理論依據(jù)。

    Abstract:

    Soil salinization is one of the major constraints to agricultural production, and accurate monitoring of soil salinization is particularly important. The ground-based measured salinity data and unmanned aerial vehicle (UAV) data collected during April 8-12, 2023, in four experimental areas of Hetao Irrigation District were used to construct partial least squares regression (PLSR), random forest (RF), backpropagation neural network (BPNN) and support vector machine regression (SVR) inversion models for soil salt content (SSC). The experimental results obtained from the inversion of the optimal model were analyzed. The soil salt distribution maps of the experimental area obtained from the inversion of the optimal model were resampled to be 1m, 5m, and 10m by using the Nearest, Bilinear, and Cubic methods, respectively, and the average values of the corresponding image elements of the Sentinel-2A satellites in the same period were calculated as the salt content of the inversion model constructed by the satellites, and then compared with the optimal model at all scales. The optimal model at each scale was analyzed and the soil salinity distribution map of Hetao Irrigation Area was drawn. The results showed that the correlation of the Bilinear method at three scales was slightly better than the other two resampling methods. The accuracy ranking of the models constructed at five scales, from the highest to the lowest, was 0.07m, 1m, 5m, 10m, and the original SSC (OSSC), the best model determination coefficient R2 of the training set and validation set at the optimal scale of 0.07m was 0.24 and 0.30 higher than that of OSSC, respectively, and the root mean square error (RMSE) was 0.06 percentage points and 0.19 percentage points lower. The research explored the promotion effect of multi-scale soil salinity on the accuracy of soil salinity model inversion by satellite multispectral remote sensing platform, which provided an effective theoretical basis for multi-source remote sensing large-scale accurate soil salinity inversion.

    參考文獻
    相似文獻
    引證文獻
引用本文

董雨昕,韓文霆,崔欣,馬偉童,翟雪東,李廣.基于無人機與Sentinel-2A遙感數(shù)據(jù)協(xié)同的裸土期土壤含鹽量反演[J].農(nóng)業(yè)機械學(xué)報,2025,56(6):434-445. DONG Yuxin, HAN Wenting, CUI Xin, MA Weitong, ZHAI Xuedong, LI Guang. Soil Salinity Inversion during Bare Soil Period Based on Collaboration of UAV and Sentinel-2A Remote Sensing Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):434-445.

復(fù)制
相關(guān)視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼