ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v8n的花生葉片病害檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中國(guó)高校產(chǎn)學(xué)研創(chuàng)新基金—新一代信息技術(shù)創(chuàng)新項(xiàng)目(2020ITA03012)和油氣鉆采工程湖北省重點(diǎn)實(shí)驗(yàn)室(長(zhǎng)江大學(xué))開放基金項(xiàng)目(YQZC202205)


Peanut Leaf Disease Detection Method Based on Improved YOLO v8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)花生葉片病害在復(fù)雜環(huán)境下相似特征難以準(zhǔn)確識(shí)別的問(wèn)題,提出一種基于改進(jìn)YOLO v8n模型的檢測(cè)算法YOLO-ADM。首先,使用ADown模塊代替部分CBS模塊,降低下采樣中的信息損失,減少了模型的參數(shù)量;其次,將可變形注意力(Deformable attention,DA)機(jī)制添加到C2f模塊組成C2f-DA結(jié)構(gòu),替換了SPPF上層的C2f模塊,使模型聚焦到花生葉片病害的特定區(qū)域,準(zhǔn)確捕捉其特征;最后,設(shè)計(jì)了一種全新的多尺度特征融合網(wǎng)絡(luò)MFI Neck代替了YOLO v8n原有的頸部網(wǎng)絡(luò),增強(qiáng)了模型對(duì)不同尺度特征的融合能力。通過(guò)在花生葉片病害數(shù)據(jù)集上進(jìn)行實(shí)驗(yàn),結(jié)果表明,改進(jìn)算法的準(zhǔn)確率、召回率、[email protected][email protected]:0.95分別達(dá)到92.3%、91.0%、95.6%和85.2%,相比原始的YOLO v8n分別提高4.5、0.2、1.6、3.0個(gè)百分點(diǎn),且模型內(nèi)存占用量減少0.65MB,參數(shù)量下降3.70×10.5。本算法在保證模型輕量化的前提下提升了檢測(cè)能力,能夠有效滿足復(fù)雜環(huán)境下花生葉片病害的識(shí)別需求,為葉片病害的檢測(cè)和監(jiān)控提供了技術(shù)參考。

    Abstract:

    Aiming to address the challenge of accurately identifying similar features of peanut leaf diseases in complex environments, an improved detection algorithm, YOLO-ADM, was proposed based on the YOLO v8n model. Firstly, the ADown module replaced part of the CBS module, reducing information loss during down sampling and decreasing the model’s parameter count. Secondly, a deformable attention mechanism was integrated into the C2f module to form the C2f-DA structure, which replaced the C2f module in the upper layer of the SPPF. This modification enabled the model to focus on critical regions of peanut leaf diseases and effectively capture their distinguishing features. Finally, a novel multi-scale feature fusion network, termed MFI Neck, was designed to replace the original YOLO v8n neck network, enhancing the model’s capacity for multi-scale feature fusion. Experimental results showed that the improved YOLO-ADM algorithm achieved precision of 92.3%, recall rate of 91.0%, mean average precision ([email protected]) of 95.6%, and mean average precision ([email protected]:0.95) of 85.2%. Compared with the original YOLO v8n model, these metrics were increased by 4.5, 0.2, 1.6, and 3.0 percentage points, respectively. This approach enhanced detection performance while maintaining model efficiency, effectively meeting the identification requirements of peanut leaf diseases in complex environments, and provided a reliable reference for the detection and monitoring of leaf diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

白凱,張玉杰,蘇鄧文,秦濤,彭志強(qiáng).基于改進(jìn)YOLO v8n的花生葉片病害檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):518-526,564. BAI Kai, ZHANG Yujie, SU Dengwen, QIN Tao, PENG Zhiqiang. Peanut Leaf Disease Detection Method Based on Improved YOLO v8n[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):518-526,564.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼