ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)與Delta機(jī)器人的病損柑橘上料部位初篩系統(tǒng)設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32302206)、國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-26)和湖北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023BBB119)


Design and Experiment of Defective Citrus Sieving System Based on Deep Learning and Delta Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在同一條生產(chǎn)線(xiàn)上完成柑橘清洗、打蠟、分級(jí)等系列商品化處理步驟有利于減少果實(shí)損傷,提升果實(shí)品質(zhì),但其中病損柑橘的存在容易造成果間侵染并污染后續(xù)產(chǎn)線(xiàn)。為在產(chǎn)線(xiàn)上料部位剔除病損柑橘,本研究設(shè)計(jì)了一種基于深度學(xué)習(xí)和Delta機(jī)器人的病損柑橘初篩系統(tǒng)。首先,通過(guò)對(duì)不同檢測(cè)模型對(duì)比試驗(yàn),選出了檢測(cè)精度最高的YOLO v7模型,并結(jié)合DeepSORT跟蹤算法實(shí)現(xiàn)了對(duì)產(chǎn)線(xiàn)上柑橘的快速、精準(zhǔn)跟蹤與檢測(cè);其次,提出了優(yōu)化后的Delta機(jī)器人門(mén)型軌跡,依據(jù)插補(bǔ)法計(jì)算出步進(jìn)電機(jī)精確控制策略;最終,搭建了具備快速定位與抓取能力的篩除裝置樣機(jī),并將其集成到了生產(chǎn)線(xiàn)上。試驗(yàn)結(jié)果表明,YOLO v7模型F1值為90%,相較于YOLO v5和SSD網(wǎng)絡(luò)分別高出2、4個(gè)百分點(diǎn);設(shè)計(jì)的Delta機(jī)器人具有較高的定位精度,對(duì)同一點(diǎn)的平均定位誤差為1.5mm,滿(mǎn)足抓取的精度要求;病損柑橘平均篩除成功率可達(dá)83.25%。因此,本文設(shè)計(jì)的設(shè)備在柑橘分揀產(chǎn)線(xiàn)上具有出色的自動(dòng)篩除能力,能夠有效減輕病損柑橘果間侵染以及污染產(chǎn)線(xiàn)的情況,從而保障柑橘生產(chǎn)線(xiàn)正常運(yùn)行。

    Abstract:

    Completing a series of commercialization processing steps such as cleaning, waxing, and grading of citrus on the same production line is conducive to reducing fruit damage and improving fruit quality. However, the presence of diseased and damaged citrus can easily cause cross-contamination and pollution to the subsequent production line. Therefore, it is necessary to remove diseased and damaged citrus at the feeding section of the production line. For this reason, a disease-damaged citrus preliminary screening system was developed based on deep learning and Delta robots. Firstly, through comparative experiments of different detection models, the YOLO v7 model with the highest accuracy was selected, and combined with the DeepSORT tracking algorithm to achieve rapid and precise tracking and detection of citrus on the production line. Secondly, an optimized Delta robot door-shaped trajectory was proposed, and the precise control strategy of the stepping motor was calculated based on the interpolation method. Finally, a prototype of a screening device with fast positioning and grasping capabilities was built and integrated into the production line. The experimental results showed that the F1-score of the YOLO v7 model was 90%, which was 2 and 4 percentage points higher than that of the YOLO v5 and SSD networks, respectively. The Delta robot designed had high positioning accuracy, with an average positioning error of 1.5mm for the same point, which met the precision requirements for grasping. The average success rate of screening out diseased and damaged oranges could reach 83.25%. Therefore, the equipment proposed had excellent automatic screening capabilities on the citrus sorting production line, which can effectively reduce the cross-contamination of diseased and damaged citrus and pollution to the production line, thus ensuring the normal operation of the citrus production line.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳耀暉,蔡武斌,孫博瀚,陶國(guó)新,林家豪,李善軍.基于深度學(xué)習(xí)與Delta機(jī)器人的病損柑橘上料部位初篩系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):535-545. CHEN Yaohui, CAI Wubin, SUN Bohan, TAO Guoxin, LIN Jiahao, LI Shanjun. Design and Experiment of Defective Citrus Sieving System Based on Deep Learning and Delta Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):535-545.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-07
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼