ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量級CDW-YOLO v7的魚類排便行為自動檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(62373390)、廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究項目(2023A1515011230)和廣州市科技計劃項目(2023E04J1238、2023E04J1239)


Automatic Detection of Fish Defecation Behavior Based on Lightweight CDW-YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    糞便是集約化水產(chǎn)養(yǎng)殖系統(tǒng)中有機廢物的主要來源,排便數(shù)量的增加和時間的延長都會加快養(yǎng)殖水質(zhì)中氨氮、亞硝酸鹽等污染物的積累濃度和速度,因此,排便行為模式對于維持最佳水環(huán)境和確保可持續(xù)的魚類生產(chǎn)至關(guān)重要。為解決傳統(tǒng)排便行為分析費時費力的問題,本研究提出一種基于改進YOLO v7-tiny的高性能、輕量級的魚類排便行為識別模型CDW-YOLO v7。該模型采用基于C2f結(jié)構(gòu)的雙向特征金字塔網(wǎng)絡(luò)(C2f-bidirectional feature pyramid network,C2f-BiFPN)優(yōu)化識別排便行為的多尺度和非線性特征融合能力,同時引入具有注意力機制的動態(tài)檢測頭(Dynamic head,DyHead)以增強模型在復(fù)雜環(huán)境中對魚類排便行為關(guān)鍵特征的提取能力,并結(jié)合WIoU損失函數(shù),減少因魚類遮擋、重疊等造成的漏檢現(xiàn)象,提高模型的準確性。實驗結(jié)果表明,與基線模型YOLO v7-tiny相比,CDW-YOLO v7模型具有更好的性能,參數(shù)量減少2.56×106,浮點運算量降低5.90×109,同時平均精度均值(mean Average Precision,mAP)提高204個百分點。此外,該模型在模型大小、精度和檢測速度等方面,均優(yōu)于3種經(jīng)典目標檢測算法(YOLO v3-tiny、YOLO v4-tiny和YOLO v5s)。本研究為魚類排便行為的精準檢測和智能化水產(chǎn)養(yǎng)殖系統(tǒng)的發(fā)展提供了理論基礎(chǔ)。

    Abstract:

    Fecal defecation is a primary source of organic waste in intensive aquaculture systems. The increase in the amount of defecation and the extension of time will accelerate the accumulation of pollutants such as ammonia nitrogen and nitrite in the aquaculture water. Therefore, monitoring fish defecation behavior is essential for maintaining optimal water conditions and ensuring sustainable fish production. In order to solve the problem that traditional defecation behavior analysis is time-consuming and labor-intensive, a high-performance, lightweight fish defecation behavior recognition model CDW-YOLO v7 was proposed based on the innovative enhancement of the YOLO v7-tiny. In the proposed model, a bidirectional feature pyramid network (C2f-BiFPN) was applied to optimize feature extraction within the neck network, a DyHead target detection head with an attention mechanism was utilized to accurately detect fish defecation behavior and strengthen relevant features, and the WIoU loss function was incorporated to improve the accuracy of the model’s outputs. Experimental results indicated that the performance of the CDW-YOLO v7 model was much better than that of the baseline YOLO v7-tiny model because reducing the number of parameters loading models by 2.56×106 and giga floating-point operations per second (GFLOPs) by 5.90×109, while increasing mean average precision (mAP) by 2.04 percentage points. Additionally, the proposed model surpassed three classic object detection algorithms (YOLO v3-tiny, YOLO v4-tiny, and YOLO v5s) when evaluating criteria such as model size, accuracy, and detection speed. The research result can provide a theoretical foundation for subsequent detection of fish health and establishing a quantitative relationship between fish behavior and water quality.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐龍琴,鄭欽月,高學(xué)凱,崔猛,劉雙印,謝彩健.基于輕量級CDW-YOLO v7的魚類排便行為自動檢測方法[J].農(nóng)業(yè)機械學(xué)報,2025,56(6):554-564. XU Longqin, ZHENG Qinyue, GAO Xuekai, CUI Meng, LIU Shuangyin, XIE Caijian. Automatic Detection of Fish Defecation Behavior Based on Lightweight CDW-YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):554-564.

復(fù)制
相關(guān)視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-01-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼