ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于BiLSTM及權(quán)重組合策略的膜污染預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

滁州市八大產(chǎn)業(yè)鏈強(qiáng)鏈補(bǔ)鏈攻堅(jiān)項(xiàng)目(2022GJ011)和滁州市“雙創(chuàng)之星”產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)項(xiàng)目


Membrane Contamination Prediction Based on BiLSTM and Weight Combination Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)膜分離法回收谷朊粉加工廢水中的蛋白質(zhì)時(shí)極易出現(xiàn)的膜污染問題,提出了一種基于雙向長短時(shí)記憶網(wǎng)絡(luò)(Bi-directional long short-term memory, BiLSTM)的權(quán)重組合模型用于對(duì)膜污染狀況的預(yù)測(cè)。以谷朊粉加工廢水提取回收中試生產(chǎn)線采集的14個(gè)相關(guān)變量作為輸入,以膜通量變化量作為輸出,建立支持向量機(jī)模型(Support vector machine, SVM)、反向傳播神經(jīng)網(wǎng)絡(luò)模型(Back propagation, BP)、隨機(jī)森林模型(Random forest, RF)、廣義回歸神經(jīng)網(wǎng)絡(luò)模型(Generalized regression neural network, GRNN)4種基準(zhǔn)模型和BiLSTM模型1種給定模型,通過誤差倒數(shù)法計(jì)算基準(zhǔn)模型與給定模型的權(quán)重,構(gòu)建權(quán)重組合預(yù)測(cè)模型;最后以決定系數(shù)R2和均方誤差(MSE)為評(píng)價(jià)指標(biāo),分析單項(xiàng)模型與權(quán)重組合模型的預(yù)測(cè)性能。結(jié)果表明,權(quán)重組合模型能夠綜合單項(xiàng)模型優(yōu)點(diǎn),在性能上顯著優(yōu)于單項(xiàng)模型;其中BP+BiLSTM+RF模型R2高達(dá)0.9906,具有較高的擬合精度;MSE為1.004L2/(h2·m4),在所有模型中最低,相較BP、BiLSTM和RF單項(xiàng)模型,分別降低46.05%、67.24%、50.81%。所開發(fā)的權(quán)重組合模型可用于谷朊粉加工廢水蛋白回收處理時(shí)膜污染程度精確預(yù)測(cè)。

    Abstract:

    Aiming at the membrane contamination problem that is very likely to occur when recovering proteins from gluten processing wastewater by membrane separation method, a weight combination model based on bi-directional long shortterm memory (BiLSTM) was proposed for the prediction of membrane contamination status. Taking the 14 relevant variables collected from the pilot production line of gluten processing wastewater extraction and recycling as inputs, and the changes in membrane flux as outputs, four baseline models were established: support vector machine model (SVM), back propagation neural network model (BP), random forest model (RF), generalized regression neural network (GRNN), together with one given model: BiLSTM model. The weights of the baseline model and the given model were calculated by the inverse error method to construct the weight combination prediction model. Finally, the prediction performance of the single model and the weight combination model was analyzed by using the coefficient of determination R2 and the mean square error (MSE) as the evaluation indexes. The results showed that the weight combination model was able to synthesize the advantages of the singleitem model and significantly outperformed the single-item model in terms of performance. Among them, the BP+BiLSTM+RF model had a high R2 of 0.9906 with high fitting accuracy and MSE of 1.004L2/(h2·m4), which was the lowest among all models. Compared with BP, BiLSTM and RF single-item models, the reduction was 46.05%, 67.24% and 50.81%, respectively. The developed weight combination model can be used for accurate prediction of membrane contamination during protein recovery treatment of gluten processing wastewater.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳坤杰,張士航,勞裕婷,孫嘯,賁宗友,柏鈺.基于BiLSTM及權(quán)重組合策略的膜污染預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(6):684-690. CHEN Kunjie, ZHANG Shihang, LAO Yuting, SUN Xiao, BEN Zongyou, BAI Yu. Membrane Contamination Prediction Based on BiLSTM and Weight Combination Strategy[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(6):684-690.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-01-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-06-10
  • 出版日期:
文章二維碼